Transistor Effect

16/12/1947

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems. Julius Edgar Lilienfeld patented a field-effect transistor in 1926 but it was not possible to actually construct a working device at that time. The first practically implemented device was a point-contact transistor invented in 1947 by American physicists John Bardeen, Walter Brattain, and William Shockley. The transistor revolutionized the field of electronics, and paved the way for smaller and cheaper radios, calculators, and computers, among other things. The transistor is on the list of IEEE milestones in electronics, and Bardeen, Brattain, and Shockley shared the 1956 Nobel Prize in Physics for their achievement.

John Bardeen, William Shockleyand Walter Brattain at Bell Labs.

The thermionic triode, a vacuum tube invented in 1907, enabled amplified radio technology and long-distance telephony. The triode, however, was a fragile device that consumed a substantial amount of power. In 1909 physicist William Eccles discovered the crystal diode oscillator.[4] German physicist Julius Edgar Lilienfeld filed a patent for a field-effect transistor (FET) in Canada in 1925, which was intended to be a solid-state replacement for the triode. Lilienfeld also filed identical patents in the United States in 1926 and 1928. However, Lilienfeld did not publish any research articles about his devices nor did his patents cite any specific examples of a working prototype. Because the production of high-quality semiconductor materials was still decades away, Lilienfeld's solid-state amplifier ideas would not have found practical use in the 1920s and 1930s, even if such a device had been built. In 1934, German inventor Oskar Heil patented a similar device in Europe.

From November 17, 1947, to December 23, 1947, John Bardeen and Walter Brattainat AT&T's Bell Labs in Murray Hill, New Jersey of the United States performed experiments and observed that when two gold point contacts were applied to a crystal of germanium, a signal was produced with the output power greater than the input. Solid State Physics Group leader William Shockley saw the potential in this, and over the next few months worked to greatly expand the knowledge of semiconductors. The term transistor was coined by John R. Pierce as a contraction of the term transresistance. According to Lillian Hoddeson and Vicki Daitch, authors of a biography of John Bardeen, Shockley had proposed that Bell Labs' first patent for a transistor should be based on the field-effect and that he be named as the inventor. Having unearthed Lilienfeld’s patents that went into obscurity years earlier, lawyers at Bell Labs advised against Shockley's proposal because the idea of a field-effect transistor that used an electric field as a "grid" was not new. Instead, what Bardeen, Brattain, and Shockley invented in 1947 was the first point-contact transistor.

A replica of the first working transistor.

The Bell team made many attempts to build such a system with various tools, but generally failed. Setups where the contacts were close enough were invariably as fragile as the original cat's whisker detectors had been, and would work briefly, if at all. Eventually they had a practical breakthrough. A piece of gold foil was glued to the edge of a triangular plastic wedge, and then the foil was sliced with a razor at the tip of the triangle. The result was two very closely spaced contacts of gold. When the plastic was pushed down onto the surface of a crystal and voltage applied to the other side (on the base of the crystal), current started to flow from one contact to the other as the base voltage pushed the electrons away from the base towards the other side near the contacts. The point-contact transistor had been invented.

On 15 December 1947, "When the points were, very close together got voltage amp about 2 but not power amp. This voltage amplification was independent of frequency 10 to 10,000 cycles".

On 16 December 1947, "Using this double point contact, contact was made to a germanium surface that had been anodized to 90 volts, electrolyte washed off in H2O and then had some gold spots evaporated on it. The gold contacts were pressed down on the bare surface. Both gold contacts to the surface rectified nicely... The separation between points was about 4x10−3 cm. One point was used as a grid and the other point as a plate. The bias (D.C.) on the grid had to be positive to get amplification... power gain 1.3 voltage gain 15 on a plate bias of about 15 volts"

Bell Telephone Laboratories needed a generic name for the new invention: "Semiconductor Triode", "Surface States Triode", "Crystal Triode", "Solid Triode" and "Iotatron" were all considered, but "Transistor," coined by John R. Pierce, was the clear winner of an internal ballot (owing in part to the affinity that Bell engineers had developed for the suffix "-istor"). The rationale for the name is described in the following extract from the company's Technical Memorandum calling for votes:

Transistor. This is an abbreviated combination of the words "transconductance" or "transfer", and "varistor". The device logically belongs in the varistor family, and has the transconductance or transfer impedance of a device having gain, so that this combination is descriptive.

Transconductance (for transfer conductance), also infrequently called mutual conductance, is the electrical characteristic relating the current through the output of a device to the voltage across the input of a device. Conductance is the reciprocal of resistance.


Importance

The transistor is the key active component in practically all modern electronics. Many consider it to be one of the greatest inventions of the 20th century. Its importance in today's society rests on its ability to be mass-produced using a highly automated process (semiconductor device fabrication) that achieves astonishingly low per-transistor costs. The invention of the first transistor at Bell Labs was named an IEEE Milestone in 2009.

Although several companies each produce over a billion individually packaged (known as discrete) transistors every year, the vast majority of transistors are now produced in integrated circuits (often shortened to IC, microchips or simply chips), along with diodes, resistors, capacitors and other electronic components, to produce complete electronic circuits. A logic gate consists of up to about twenty transistors whereas an advanced microprocessor, as of 2009, can use as many as 3 billion transistors (MOSFETs). "About 60 million transistors were built in 2002… for [each] man, woman, and child on Earth."

The transistor's low cost, flexibility, and reliability have made it a ubiquitous device. Transistorized mechatronic circuits have replaced electromechanical devices in controlling appliances and machinery. It is often easier and cheaper to use a standard microcontroller and write a computer program to carry out a control function than to design an equivalent mechanical system to control that same function.

Transistors - Field Effect and Bipolar Transistors: MOSFETS and BJTs
Field Effect Transistor (FET)
The FET (field effect transistor)
The invention of the transistor

REFERENCES

Stanford University. Available in: https://web.stanford.edu/dept/HPS/TimLenoir/SiliconValley99/Transistor/RiordanHoddeson_Inventtransistor.pdf. Access: 20/10/2018.

Wikipedia. Available in: https:// https://en.wikipedia.org/wiki/Transistor. Access in: 20/10/2018.

Wikipedia. Available in: https://en.wikipedia.org/wiki/History_of_the_transistor. Access in: 20/10/2018.

Wikipedia. Available in: https://en.wikipedia.org/wiki/Transconductance. Access in: 20/10/2018.

0 comments

Comment
No comments avaliable.

Author

Info

Published in 20/10/2018

Updated in 19/02/2021

All events in the topic Condensed Matter Physics:


01/01/1820Classification of crystalline symmetriesClassification of crystalline symmetries
01/01/1879Hall EffectHall Effect
01/01/190001/01/1905Drude and Lorentz model on electric conductionDrude and Lorentz model on electric conduction
08/04/1911Discovery of mercury superconductivity by OnnesDiscovery of mercury superconductivity by Onnes
01/10/1913H. K. Onnes receives the Nobel PrizeH. K. Onnes receives the Nobel Prize
10/10/1914Max von Laue receives the Nobel PrizeMax von Laue receives the Nobel Prize
01/10/1915Sir W. H. Bragg and W. L. Bragg share Nobel PrizeSir W. H. Bragg and W. L. Bragg share Nobel Prize
01/10/1930Sir C. V. Raman receives the Nobel PrizeSir C. V. Raman receives the Nobel Prize
01/10/1956Shockley, Bardeen and Brattain share Nobel PrizeShockley, Bardeen and Brattain share Nobel Prize
01/10/1962L. D. Landau receives the Nobel PrizeL. D. Landau receives the Nobel Prize
23/06/1913Study of Crystals using X-rays by W.H. & W.L. BraggStudy of Crystals using X-rays by W.H. & W.L. Bragg
21/02/1928Raman scatteringRaman scattering
01/01/192801/01/1933Quantum Theory in SolidsQuantum Theory in Solids
16/12/1947Transistor EffectTransistor Effect
01/01/1950The superconductivity theory of Ginzburg-LandauThe superconductivity theory of Ginzburg-Landau
18/02/1957Theory of Superconductivity BCSTheory of Superconductivity BCS
08/06/1962Josephson Effect tunneling in superconductorsJosephson Effect tunneling in superconductors
01/01/1965Density Functional TheoryDensity Functional Theory
01/01/1971Superfluid helium-3Superfluid helium-3
01/01/1973Liquid Crystal TheoryLiquid Crystal Theory
10/10/198001/10/1982Integer and Fractional Quantum Hall EffectInteger and Fractional Quantum Hall Effect
10/10/1982Discovery of Quasi-crystalsDiscovery of Quasi-crystals
11/09/1985Fullerene 60Fullerene 60
01/10/1986High-temperature superconductivityHigh-temperature superconductivity
01/01/1988Giant magnetoresistanceGiant magnetoresistance
01/06/1991Carbon nanotubeCarbon nanotube
01/01/2004Discovering GrapheneDiscovering Graphene
08/12/2017ExcitoniumExcitonium