Skip to content

de Broglie hypothesis

01/01/1924

Louis de Broglie

Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter can exhibit wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. The concept that matter behaves like a wave was proposed by Louis de Broglie in 1924. It is also referred to as the de Broglie hypothesis Matter waves are referred to as de Broglie waves. Any aspect of the behaviour or properties of a material object that varies in time or space in conformity with the mathematical equations that describe waves. The de Broglie matter wave would be a stationary wave, which only allows for some very specific modes of vibration (quantization) that would be n entire wavelengths.

The de Broglie wavelength is the wavelength, λ, associated with a massive particle and is related to its momentum, p, through the Planck constant, h:

λ = h/p = h/(mv)

where m is the mass of the particle and v is its velocity.

De Broglie waves account for the appearance of subatomic particles at conventionally unexpected sites because their waves penetrate barriers much as sound passes through walls. Thus a heavy atomic nucleus occasionally can eject a piece of itself in a process called alpha decay. The piece of nucleus (alpha particle) has insufficient energy as a particle to overcome the force barrier surrounding the nucleus; but as a wave it can leak through the barrier—that is, it has a finite probability of being found outside the nucleus.

De Broglie waves around a closed loop, such as would be associated with electrons circling nuclei in atoms, can persist only if the standing waves fit evenly around the loop; otherwise they cancel themselves out. This requirement causes the electrons in atoms to select only particular configurations, or states, among the many that would otherwise be available.


de Broglie's matter waves

de Broglie’s hypothesis: wave-particle duality

de Broglie original paper

Quantum Wave Interference simulation

REFERENCES

Encyclopædia Britannica. Available in: https://www.britannica.com/science/de-Broglie-wave. Access in: 05/09/2018.


0 comments

Comment

No comments avaliable.

Author

Info

Published in 6/09/2018

Updated in 19/02/2021

All events in the topic Quantum Mechanics:


01/01/1900Planck's quantum hypothesisPlanck's quantum hypothesis
01/03/1904Thomson Atomic ModelThomson Atomic Model
01/01/1918Planck receives Nobel PrizePlanck receives Nobel Prize
01/01/1906J. J. Thomson receives Nobel PrizeJ. J. Thomson receives Nobel Prize
01/01/1913Bohr's atomic modelBohr's atomic model
05/01/1923Compton EffectCompton Effect
01/01/1924de Broglie hypothesisde Broglie hypothesis
01/01/1929de Broglie receives the Nobel Prize
01/01/192512/01/1927Heisenberg's quantum mechanicsHeisenberg's quantum mechanics
01/01/1932Heisenberg receives Nobel PrizeHeisenberg receives Nobel Prize
01/01/1933 • 01:00:00Schrödinger and Dirac share the Nobel PrizeSchrödinger and Dirac share the Nobel Prize
01/01/1926Schrödinger's Quantum MechanicsSchrödinger's Quantum Mechanics
01/06/1927Wave–particle dualityWave–particle duality
01/01/1922Spin and the Stern-Gerlach experimentSpin and the Stern-Gerlach experiment
01/01/1943Otto Stern receives the Nobel PrizeOtto Stern receives the Nobel Prize
24/03/1928Relativistic quantum mechanicsRelativistic quantum mechanics
01/01/1930Applications of quantum mechanicsApplications of quantum mechanics
01/12/1930Prediction of NeutrinoPrediction of Neutrino
01/01/1956Experimental discovery of NeutrinoExperimental discovery of Neutrino
01/10/1945Wolfgang Pauli receives Nobel PrizeWolfgang Pauli receives Nobel Prize