Discovery of Atomic Nucleus and Rutherford model of the atom

01/01/190901/01/1911View on timeline


Rutherford atomic model, also called nuclear atom or planetary model of the atom, description of the structure of atoms proposed (1911) by the New Zealand-born physicist Ernest Rutherford. Rutherford directed the famous Geiger–Marsden experiment in 1909 which suggested, upon Rutherford's 1911 analysis, that J. J. Thomson's plum pudding model of the atom was incorrect. Rutherford's new model for the atom, based on the experimental results, contained the new features of a relatively high central charge concentrated into a very small volume in comparison to the rest of the atom and with this central volume also containing the bulk of the atomic mass of the atom. This region would be known as the "nucleus" of the atom.

Rutherford designed an experiment to use the alpha particles emitted by a radioactive element as probes to the unseen world of atomic structure. If Thomson was correct, the beam would go straight through the gold foil. Most of the beams went through the foil, but a few were deflected by the foil and hit a spot on a screen placed off to one side. One in 20,000 alpha particles had been deflected 45º or more. Rutherford asked why so many alpha particles passed through the gold foil while a few were deflected so greatly. The only explanation is that there would be a mass agglomerate that would have a positive charge and repel the alpha particle, causing the scattering.

The model described the atom as a tiny, dense, positively charged core called a nucleus, in which nearly all the mass is concentrated, around which the light, negative constituents, called electrons, circulate at some distance, much like planets revolving around the Sun.

Geiger–Marsden experiment

A replica of one of Geiger and Marsden's apparatus
Gold foil experiment

Rutherford's article on the scattering of alpha particles

Rutherford's Model of an Atom
The Discovery of the Atomic Nucleus


TIPLER, P. A. e LLEWELLYN, R. A. Modern Physics. 6ª ed. Freeman and Company, 2012. p. 156-162.

Encyclopædia Britannica. Available in: Access in: 24/08/2018.

Encyclopædia Britannica. Available in: Access in: 03/09/2018.



No comments avaliable.



Published in 24/08/2018

Updated in 19/02/2021

All events in the topic Quantum Mechanics:

Invalid DatePlanck's quantum hypothesisPlanck's quantum hypothesis
Invalid DateThomson Atomic ModelThomson Atomic Model
Invalid DatePlanck receives Nobel PrizePlanck receives Nobel Prize
Invalid DateJ. J. Thomson receives Nobel PrizeJ. J. Thomson receives Nobel Prize
Invalid DateBohr's atomic modelBohr's atomic model
Invalid DateCompton EffectCompton Effect
Invalid Datede Broglie hypothesisde Broglie hypothesis
Invalid Datede Broglie receives the Nobel Prize
Invalid DateHeisenberg's quantum mechanicsHeisenberg's quantum mechanics
Invalid DateHeisenberg receives Nobel PrizeHeisenberg receives Nobel Prize
Invalid DateSchrödinger's Quantum MechanicsSchrödinger's Quantum Mechanics
Invalid DateWave–particle dualityWave–particle duality
Invalid DateSpin and the Stern-Gerlach experimentSpin and the Stern-Gerlach experiment
Invalid DateOtto Stern receives the Nobel PrizeOtto Stern receives the Nobel Prize
Invalid DateRelativistic quantum mechanicsRelativistic quantum mechanics
Invalid DateApplications of quantum mechanicsApplications of quantum mechanics
Invalid DatePrediction of NeutrinoPrediction of Neutrino
Invalid DateExperimental discovery of NeutrinoExperimental discovery of Neutrino
Invalid DateWolfgang Pauli receives Nobel PrizeWolfgang Pauli receives Nobel Prize