Galaxy rotation curve

07/07/1970View on timeline

Wishing to avoid controversial areas of astronomy, including quasars and galactic motion, Vera Rubin began to study the rotation and outer reaches of galaxies, an interest sparked by her collaboration with the Burbidges. She investigated the rotation curves of spiral galaxies, again beginning with Andromeda, by looking at their outermost material, and observed flat rotation curves: the outermost components of the galaxy were moving as quickly as those close to the center. This was an early indication that spiral galaxies were surrounded by dark matter haloes. She further uncovered the discrepancy between the predicted angular motion of galaxies based on the visible light and the observed motion. Her research showed that spiral galaxies rotate quickly enough that they should fly apart, if the gravity of their constituent stars was all that was holding them together; because they stay intact, a large amount of unseen mass must be holding them together, a conundrum that became known as the galaxy rotation problem.

In the late 1960s and early 1970s, Vera Rubin, an astronomer at the Department of Terrestrial Magnetism at the Carnegie Institution of Washington, worked with a new sensitive spectrograph that could measure the velocity curve of edge-on spiral galaxies to a greater degree of accuracy than had ever before been achieved. Together with fellow staff-member Kent Ford, Rubin announced at a 1975 meeting of the American Astronomical Society the discovery that most stars in spiral galaxies orbit at roughly the same speed, and that this implied that galaxy masses grow approximately linearly with radius well beyond the location of most of the stars (the galactic bulge). Rubin presented her results in an influential paper in 1980. These results suggested that either Newtonian gravity does not apply universally or that, conservatively, upwards of 50% of the mass of galaxies was contained in the relatively dark galactic halo. Although initially met with skepticism, Rubin's results have been confirmed over the subsequent decades.

Rubin's calculations showed that galaxies must contain at least five to ten times as much dark matter as ordinary matter. Rubin's results were confirmed over subsequent decades, and became the first persuasive results supporting the theory of dark matter, initially proposed by Fritz Zwicky in the 1930s. This data was confirmed by radio astronomers, the discovery of the cosmic microwave background, and images of gravitational lensing. Her research also prompted a theory of non-Newtonian gravity on galactic scales, but this theory has not been widely accepted by astrophysicists.

The rotation curve of a disc galaxy (also called a velocity curve) is a plot of the orbital speeds of visible stars or gas in that galaxy versus their radial distance from that galaxy's centre. It is typically rendered graphically as a plot, and the data observed from each side of a spiral galaxy are generally asymmetric, so that data from each side are averaged to create the curve. A significant discrepancy exists between the experimental curves observed, and a curve derived from theory. The theory of dark matter is currently postulated to account for the variance.

Rotation curve of spiral galaxy Messier 33 (yellow and blue points with error bars), and a predicted...

The rotation curve of a disc galaxy (also called a velocity curve) is a plot of the orbital speeds of visible stars or gas in that galaxy versus their radial distance from that galaxy's centre. The rotation curves of spiral galaxies are asymmetric, so the observational data from each side of a galaxy are generally averaged. Rotation curve asymmetry appears to be normal rather than exceptional.

The rotational/orbital speeds of galaxies/stars do not follow the rules found in other orbital systems such as stars/planets and planets/moons that have most of their mass at the centre. Stars revolve around their galaxy's centre at equal or increasing speed over a large range of distances. In contrast, the orbital velocities of planets in planetary systems and moons orbiting planets decline with distance. In the latter cases, this reflects the mass distributions within those systems. The mass estimations for galaxies based on the light they emit are far too low to explain the velocity observations.

The galaxy rotation problem is the discrepancy between observed galaxy rotation curves and the theoretical prediction, assuming a centrally dominated mass associated with the observed luminous material. When mass profiles of galaxies are calculated from the distribution of stars in spirals and mass-to-light ratios in the stellar disks, they do not match with the masses derived from the observed rotation curves and the law of gravity. A solution to this conundrum is to hypothesize the existence of dark matter and to assume its distribution from the galaxy's center out to its halo. Though dark matter is by far the most accepted explanation of the rotation problem, other proposals have been offered with varying degrees of success. Of the possible alternatives, the most notable is Modified Newtonian Dynamics (MOND), which involves modifying the laws of gravity.

If Newtonian mechanics is assumed to be correct, it would follow that most of the mass of the galaxy had to be in the galactic bulge near the center and that the stars and gas in the disk portion should orbit the center at decreasing velocities with radial distance from the galactic center (the dashed line in Fig. above).

Observations of the rotation curve of spirals, however, do not bear this out. Rather, the curves do not decrease in the expected inverse square root relationship but are "flat", i.e. outside of the central bulge the speed is nearly a constant (the solid line in Fig. above). It is also observed that galaxies with a uniform distribution of luminous matter have a rotation curve that rises from the center to the edge, and most low-surface-brightness galaxies (LSB galaxies) have the same anomalous rotation curve.

The rotation curves might be explained by hypothesizing the existence of a substantial amount of matter permeating the galaxy that is not emitting light in the mass-to-light ratio of the central bulge. The material responsible for the extra mass was dubbed "dark matter", the existence of which was first posited in the 1930s by Jan Oort in his measurements of the Oort constants and Fritz Zwicky in his studies of the masses of galaxy clusters. The existence of non-baryonic cold dark matter (CDM) is today a major feature of the Lambda-CDM model that describes the cosmology of the universe.

Galaxy rotation under the influence of dark matter

In the video: Left -- A simulated galaxy without dark matter. Right -- Galaxy with a flat rotation curve that would be expected under the presence of dark matter.

Halo density profiles

In order to accommodate a flat rotation curve, a density profile for a galaxy and its environs must be different than one that is centrally concentrated. Newton's version of Kepler's Third Law implies that the spherically symmetric, radial density profile ρ(r) is:


where v(r) is the radial orbital velocity profile and G is the gravitational constant. This profile closely matches the expectations of a singular isothermal sphere profile where if v(r) is approximately constant then the density ρ ∝ r − 2 to some inner "core radius" where the density is then assumed constant. Observations do not comport with such a simple profile, as reported by Navarro, Frenk, and White in a seminal 1996 paper.

The authors then remarked, that a "gently changing logarithmic slope" for a density profile function could also accommodate approximately flat rotation curves over large scales. They found the famous Navarro–Frenk–White profile which is consistent both with N-body simulations and observations given by


where the central density, ρ0, and the scale radius, Rs, are parameters that vary from halo to halo. Because the slope of the density profile diverges at the center, other alternative profiles have been proposed, for example, the Einasto profile which has exhibited better agreement with certain dark matter halo simulations.

Observations of orbit velocities in spiral galaxies suggest a mass structure according to:


with Φ the galaxy gravitational potential.

Since observations of galaxy rotation do not match the distribution expected from application of Kepler's laws, they do not match the distribution of luminous matter. This implies that spiral galaxies contain large amounts of dark matter or, in alternative, the existence of exotic physics in action on galactic scales. The additional invisible component becomes progressively more conspicuous in each galaxy at outer radii and among galaxies in the less luminous ones.

Cosmology tells us that about 26% of the mass of the Universe is composed of dark matter, a hypothetical type of matter which does not emit or interact with electromagnetic radiation. Dark matter dominates the gravitational potential of galaxies and cluster of galaxies. Galaxies are baryonic condensations of stars and gas (namely H and He) that lie at the centers of much larger dark haloes of dark matter, affected by a gravitational instability caused by primordial density fluctuations.

The main goal has become to understand the nature and the history of these ubiquitous dark haloes by investigating the properties of the galaxies they contain (i.e. their luminosities, kinematics, sizes, and morphologies). The measurement of the kinematics (their positions, velocities and accelerations) of the observable stars and gas has become a tool to investigate the nature of dark matter, as to its content and distribution relative to that of the various baryonic components of those galaxies.

Further investigations

The rotational dynamics of galaxies are well characterized by their position on the Tully–Fisher relation, which shows that for spiral galaxies the rotational velocity is uniquely related to its total luminosity. A consistent way to predict the rotational velocity of a spiral galaxy is to measure its bolometric luminosity and then read its rotation rate from its location on the Tully–Fisher diagram. Conversely, knowing the rotational velocity of a spiral galaxy gives its luminosity. Thus the magnitude of the galaxy rotation is related to the galaxy's visible mass.

While precise fitting of the bulge, disk, and halo density profiles is a rather complicated process, it is straightforward to model the observables of rotating galaxies through this relationship. So, while state-of-the-art cosmological and galaxy formation simulations of dark matter with normal baryonic matter included can be matched to galaxy observations, there is not yet any straightforward explanation as to why the observed scaling relationship exists. Additionally, detailed investigations of the rotation curves of low-surface-brightness galaxies (LSB galaxies) in the 1990s and of their position on the Tully–Fisher relation showed that LSB galaxies had to have dark matter haloes that are more extended and less dense than those of HSB galaxies and thus surface brightness is related to the halo properties. Such dark-matter-dominated dwarf galaxies may hold the key to solving the dwarf galaxy problem of structure formation.

Very importantly, the analysis of the inner parts of low and high surface brightness galaxies showed that the shape of the rotation curves in the centre of dark-matter dominated systems indicates a profile different from the NFW spatial mass distribution profile. This so-called cuspy halo problem is a persistent problem for the standard cold dark matter theory. Simulations involving the feedback of stellar energy into the interstellar medium in order to alter the predicted dark matter distribution in the innermost regions of galaxies are frequently invoked in this context.

Comparison of rotating disc galaxies in the distant Universe and the present day.

Alternatives to dark matter

There have been a number of attempts to solve the problem of galaxy rotation by modifying gravity without invoking dark matter. One of the most discussed is Modified Newtonian Dynamics (MOND), originally proposed by Mordehai Milgrom in 1983, which modifies the Newtonian force law at low accelerations to enhance the effective gravitational attraction. MOND has had a considerable amount of success in predicting the rotation curves of low-surface-brightness galaxies, matching the baryonic Tully–Fisher relation, and the velocity dispersions of the small satellite galaxies of the Local Group.

Using data from the Spitzer Photometry and Accurate Rotation Curves (SPARC) database, a group has found the radial acceleration traced by rotation curves could be predicted just from the observed baryon distribution (that is, including stars and gas but not dark matter). The same relation provided a good fit for 2693 samples in 153 rotating galaxies, with diverse shapes, masses, sizes, and gas fractions. Brightness in the near IR, where the more stable light from red giants dominates, was used to estimate the density contribution due to stars more consistently. The results are consistent with MOND, and place limits on alternative explanations involving dark matter alone. However, cosmological simulations within a Lambda-CDM framework that include baryonic feedback effects reproduce the same relation, without the need to invoke new dynamics (such as MOND). Thus, a contribution due to dark matter itself can be fully predictable from that of the baryons, once the feedback effects due to the dissipative collapse of baryons is taken into account.

MOND is not a relativistic theory, although relativistic theories which reduce to MOND have been proposed, such as tensor–vector–scalar gravity, scalar–tensor–vector gravity (STVG), and the f(R) theory of Capozziello and De Laurentis.

ROTATION OF THE ANDROMEDA NEBULA FROM A SPECTROSCOPIC SURVEY OF EMISSION REGIONS - Vera C. Rubinf an...Evidence for dark matter from rotation curves (Ten years later) - Vera C. Rubin
Vera Rubin and Dark Matter
How Vera Rubin Found the First Direct Evidence for Dark Matter | Great Minds
Vera Rubin Documentary
Interview with Ece Eser on pioneering astronomer Vera Rubin


Nature. Available in: Access in: 26/11/2018.

Astronomy. Available in: Access in: 26/11/2018.

Wikipedia. Available in: Access in: 26/11/2018.

Wikipedia. Available in: Access in: 26/11/2018.

Cornell University Library. Available in: Access in: 26/11/2018.



No comments avaliable.



Published in 27/11/2018

Updated in 19/02/2021

All events in the topic Astronomy and Cosmology:

Invalid DateThe Great DebateThe Great Debate
Invalid DateLemaître theory of the expansion of the UniverseLemaître theory of the expansion of the Universe
Invalid DateExpansion of the universeExpansion of the universe
Invalid DateDark MatterDark Matter
Invalid DatePrediction of Neutron StarsPrediction of Neutron Stars
Invalid DateGalaxy rotation curveGalaxy rotation curve
Invalid DatePrimordial NucleosynthesisPrimordial Nucleosynthesis
Invalid DateDiscovery of cosmic background radiationDiscovery of cosmic background radiation
Invalid DateDiscovery of Neutrons StarsDiscovery of Neutrons Stars
Invalid DateWMAP SatelliteWMAP Satellite
Invalid DatePlanck SatellitePlanck Satellite
Invalid DateBaryon acoustic oscillationsBaryon acoustic oscillations
Invalid DateGravitational waves of two black holesGravitational waves of two black holes
Invalid DateGravitational waves of two neutron starsGravitational waves of two neutron stars