Author:

Event:

Visualization(s): 549

Created: 2018-11-12 00:56:29.

Last modified: 2020-03-11 14:06:39.

External Link: The quark model

Rss Feed: Physics

Resume:

Videos
00
Images
00
Audios
00
Files
00
Links
00

Tags:

No tags ...

The quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eightfold Way, the successful classification scheme organizing the large number of lighter hadrons that were being discovered starting in the 1950s and continuing through the 1960s. It received experimental verification beginning in the late 1960s and is a valid effective classification of them to date. The quark model was independently proposed by physicists Murray Gell-Mann, and George Zweig in 1964. Today, the model has essentially been absorbed as a component of the established quantum field theory of strong and electroweak particle interactions, dubbed the Standard Model.

Murray Gell-Mann (left) and George Zweig (right).

Hadrons are not really "elementary", and can be regarded as bound states of their "valence quarks" and antiquarks, which give rise to the quantum numbers of the hadrons. These quantum numbers are labels identifying the hadrons, and are of two kinds. One set comes from the Poincaré symmetry—JPC, where J, P and C stand for the total angular momentum, P-symmetry, and C-symmetry, respectively.

The remaining are flavor quantum numbers such as the isospin, strangeness, charm, and so on. The strong interactions binding the quarks together are insensitive to these quantum numbers, so variation of them leads to systematic mass and coupling relationships among the hadrons in the same flavor multiplet.

All quarks are assigned a baryon number of ⅓. Up, charm and top quarks have an electric charge of +⅔, while the down, strange, and bottom quarks have an electric charge of −⅓. Antiquarks have the opposite quantum numbers. Quarks are spin-½ particles, and thus fermions. Each quark or antiquark obeys the Gell-Mann−Nishijima formula individually, so any additive assembly of them will as well.

Mesons are made of a valence quark−antiquark pair (thus have a baryon number of 0), while baryons are made of three quarks (thus have a baryon number of 1). This article discusses the quark model for the up, down, and strange flavors of quark (which form an approximate flavor SU(3) symmetry). There are generalizations to larger number of flavors.

Developing classification schemes for hadrons became a timely question after new experimental techniques uncovered so many of them, that it became clear that they could not all be elementary. These discoveries led Wolfgang Pauli to exclaim "Had I foreseen that, I would have gone into botany." and Enrico Fermi to advise his student Leon Lederman: "Young man, if I could remember the names of these particles, I would have been a botanist." These new schemes earned Nobel prizes for experimental particle physicists, including Luis Alvarez, who was at the forefront of many of these developments. Constructing hadrons as bound states of fewer constituents would thus organize the "zoo" at hand. Several early proposals, such as the ones by Enrico Fermi and Chen-Ning Yang (1949), and the Sakata model (1956), ended up satisfactorily covering the mesons, but failed with baryons, and so were unable to explain all the data.

The Gell-Mann–Nishijima formula, developed by Murray Gell-Mann and Kazuhiko Nishijima, led to the Eightfold way classification, invented by Gell-Mann, with important independent contributions from Yuval Ne'eman, in 1961. The hadrons were organized into SU(3) representation multiplets, octets and decuplets, of roughly the same mass, due to the strong interactions; and smaller mass differences linked to the flavor quantum numbers, invisible to the strong interactions. The Gell-Mann–Okubo mass formula systematized the quantification of these small mass differences among members of a hadronic multiplet, controlled by the explicit symmetry breaking of SU(3).

The spin-3⁄2 Ω^{−}baryon, a member of the ground-state decuplet, was a crucial prediction of that classification. After it was discovered in an experiment at Brookhaven National Laboratory, Gell-Mann received a Nobel prize in physics for his work on the Eightfold Way, in 1969.

The pseudoscalar mesonnonet. Members of the octet are shown in green, the singlet in magenta. The na...

Finally, in 1964, Gell-Mann, and, independently, George Zweig, discerned what the Eightfold Way picture encodes. They posited elementary fermionic constituents, unobserved, and possibly unobservable in a free form, underlying and elegantly encoding the Eightfold Way classification, in an economical, tight structure, resulting in further simplicity. Hadronic mass differences were now linked to the different masses of the constituent quarks.

It would take about a decade for the unexpected nature—and physical reality—of these quarks to be appreciated more fully (See Quarks). Counter-intuitively, they cannot ever be observed in isolation (color confinement), but instead always combine with other quarks to form full hadrons, which then furnish ample indirect information on the trapped quarks themselves. Conversely, the quarks serve in the definition of Quantum chromodynamics, the fundamental theory fully describing the strong interactions; and the Eightfold Way is now understood to be a consequence of the flavor symmetry structure of the lightest three of them.

The Eightfold Way classification is named after the following fact. If we take three flavors of quarks, then the quarks lie in the fundamental representation, 3 (called the triplet) of flavor SU(3). The antiquarks lie in the complex conjugate representation 3. The nine states (nonet) made out of a pair can be decomposed into the trivial representation, 1 (called the singlet), and the adjoint representation, 8 (called the octet). The notation for this decomposition is

The Eightfold Way shows the application of this decomposition to the mesons. If the flavor symmetry were exact (as in the limit that only the strong interactions operate, but the electroweak interactions are notionally switched off), then all nine mesons would have the same mass. However, the physical content of the full theory includes consideration of the symmetry breaking induced by the quark mass differences, and considerations of mixing between various multiplets (such as the octet and the singlet).

Nevertheless, the mass splitting between the η and the η′ is larger than the quark model can accommodate, and this "η – η′ puzzle" has its origin in topological peculiarities of the strong interaction vacuum, such as instanton configurations.

Pseudoscalar mesons of spin 0 form a nonet.

Mesons are hadrons with zero baryon number. If the quark–antiquark pair are in an orbital angular momentum L state, and have spin S, then

- |L − S| ≤ J ≤ L + S, where S = 0 or 1,
- P = (−1)
^{L + 1}, where the 1 in the exponent arises from the intrinsic parity of the quark–antiquark pair. - C = (−1)
^{L + S}for mesons which have no flavor. Flavored mesons have indefinite value of C. - For isospin I = 1 and 0 states, one can define a new multiplicative quantum number called the G-parity such that G = (−1)
^{I + L + S}.

If P = (−1)^{J}, then it follows that S = 1, thus PC= 1. States with these quantum numbers are called natural parity states; while all other quantum numbers are thus called exotic (for example the state J^{PC} = 0^{−−}).

Since quarks are fermions, the spin-statistics theorem implies that the wavefunction of a baryon must be antisymmetric under exchange of any two quarks. This antisymmetric wavefunction is obtained by making it fully antisymmetric in color, discussed below, and symmetric in flavor, spin and space put together. With three flavors, the decomposition in flavor is

.

The decuplet is symmetric in flavor, the singlet antisymmetric and the two octets have mixed symmetry. The space and spin parts of the states are thereby fixed once the orbital angular momentum is given.

It is sometimes useful to think of the basis states of quarks as the six states of three flavors and two spins per flavor. This approximate symmetry is called spin-flavor SU(6). In terms of this, the decomposition is

.

The 56 states with symmetric combination of spin and flavour decompose under flavor SU(3) into

.

where the superscript denotes the spin, S, of the baryon. Since these states are symmetric in spin and flavor, they should also be symmetric in space—a condition that is easily satisfied by making the orbital angular momentum L = 0. These are the ground state baryons.

The S = 1⁄2 octet baryons are the two nucleons (p^{+} , n^{0} ), the three Sigmas (Σ^{+}, Σ^{0}, Σ^{−}), the two Xis (Ξ^{0}, Ξ^{−} ), and the Lambda (Λ^{0}).

The S = 1⁄2 ground state baryon octet.

The S = 3⁄2 decuplet baryons are the four Deltas ( Δ^{++}, Δ^{+}, Δ^{0}, Δ^{−}), three Sigmas ( Σ^{∗+}, Σ^{∗0}, Σ^{∗−}), two Xis (Ξ^{∗0}, Ξ^{∗−}), and the Omega (Ω^{−}).

The S = 3⁄2 baryon decuplet.

Mixing of baryons, mass splittings within and between multiplets, and magnetic moments are some of the other questions that the model predicts successfully.

Color quantum numbers are the characteristic charges of the strong force, and are completely uninvolved in electroweak interactions. They were discovered as a consequence of the quark model classification, when it was appreciated that the spin S = 3⁄2 baryon, the Δ^{++}, required three up quarks with parallel spins and vanishing orbital angular momentum. Therefore, it could not have an antisymmetric wave function, (due to the Pauli exclusion principle), unless there were a hidden quantum number. Oscar Greenberg noted this problem in 1964, suggesting that quarks should be para-fermions.

Instead, six months later, Moo-Young Han and Yoichiro Nambu suggested the existence of three triplets of quarks to solve this problem, but flavor and color intertwined in that model -- they did not commute.

The modern concept of color completely commuting with all other charges and providing the strong force charge was articulated in 1973, by William Bardeen, Harald Fritzsch, and Murray Gell-Mann.

While the quark model is derivable from the theory of quantum chromodynamics, the structure of hadrons is more complicated than this model allows. The full quantum mechanicalwave function of any hadron must include virtual quark pairs as well as virtual gluons, and allows for a variety of mixings. There may be hadrons which lie outside the quark model. Among these are the glueballs (which contain only valence gluons), hybrids (which contain valence quarks as well as gluons) and "exotic hadrons" (such as tetraquarks or pentaquarks).

REFERENCES

California Institute of Technology. Available in: http://www.caltech.edu/news/50-years-quarks-43351. Access in 11/11/2018.

Wikipedia. Available in: https://en.wikipedia.org/wiki/Quark_model. Access in: 11/11/2018.

Default timespace

Default timespace

Quantum Mechanics

23
Planck's quantum hypothesis
Thomson Atomic Model
J. J. Thomson receives Nobel Prize
Discovery of Atomic Nucleus and Rutherford model of the atom
Bohr's atomic model
Planck receives Nobel Prize
Spin and the Stern-Gerlach experiment
Compton Effect
de Broglie hypothesis
Heisenberg's quantum mechanics
Schrödinger's Quantum Mechanics
Arthur H. Compton and Charles T. R. Wilson share the Nobel Prize
Wave–particle duality
Relativistic quantum mechanics
de Broglie receives the Nobel Prize
Applications of quantum mechanics
Prediction of Neutrino
Heisenberg receives Nobel Prize
Schrödinger and Dirac share the Nobel Prize
G. P. Thomson and C. J. Davisson share the Nobel Prize
Otto Stern receives the Nobel Prize
Wolfgang Pauli receives Nobel Prize
Experimental discovery of Neutrino

Nuclear Physics

26
Separation of Radium by Marie and Pierre Curie
Marie and Pierre Curie receive the Nobel Prize
Ernest Rutherford receives the Nobel Prize
Marie Curie receives the Nobel Prize
Artificial nuclear reaction and discovery of Proton
Niels Bohr receives the Nobel Prize
Alpha decay theory
Cyclotron
Fermi theory of beta decay
Nuclear Strong Interaction Theory
Enrico Fermi receives the Nobel Prize
Nuclear Fission
Nuclear Fusion Theory
The Nuclear Shell Model
Ernest O. Lawrence receives Nobel Prize
First reaction of Nuclear Fission
Atomic Bomb
Hideki Yukawa receives the Nobel Prize
Nuclear collective model
Hydrogen bomb
First Positron Emission Tomography at Brookhaven
Wigner, Mayer and Jensen share the Nobel Prize
H. Bethe receives the Nobel Prize
Structure of Proton using the SLAC Laboratory
M. Gell-Mann receives the Nobel Prize
Bohr, Mottelson and Rainwater received the Nobel Prize

Condensed Matter Physics

30
Classification of crystalline symmetries
Hall Effect
Drude and Lorentz model on electric conduction
Discovery of mercury superconductivity by Onnes
Discovery of X-ray diffraction by Crystals by Van Laue
Study of Crystals using X-rays by W.H. & W.L. Bragg
H. K. Onnes receives the Nobel Prize
Max von Laue receives the Nobel Prize
Sir W. H. Bragg and W. L. Bragg share Nobel Prize
Quantum Theory in Solids
Raman scattering
Sir C. V. Raman receives the Nobel Prize
Transistor Effect
The superconductivity theory of Ginzburg-Landau
Shockley, Bardeen and Brattain share Nobel Prize
Theory of Superconductivity BCS
Josephson Effect tunneling in superconductors
L. D. Landau receives the Nobel Prize
Density Functional Theory
Superfluid helium-3
Bardeen, Cooper and Schrieffer share the Nobel Prize
Liquid Crystal Theory
Integer and Fractional Quantum Hall Effect
Discovery of Quasi-crystals
Fullerene 60
High-temperature superconductivity
Giant magnetoresistance
Carbon nanotube
Discovering Graphene
Excitonium

Field Theory and Particle Physics

14
Electroweak interaction
Discovery of Muon neutrino

The quark model

The Quantum Electrodynamics
Asymptotic freedom
Tau Lepton
Glashow, Salam and Weinberg recives the Nobel Prize
Discovery of carrier particles of weak force W and Z
C. Rubbia and S. van der Meer receive the Nobel Prize
L. M. Lederman, M. Schwartz and J. Steinberger receive the Nobel Prize
M. L. Perl and F. Reines receive the Nobel Prize
D. J. Gross, H. D. Politzer and F. Wilczek receive the Nobel Prize
The Higgs boson
F. Englert and P. W. Higgs receive the Nobel Prize
Astronomy and Cosmology

15
The Great Debate
Lemaître theory of the expansion of the Universe
Expansion of the universe
Dark Matter
Prediction of Neutron Stars
Discovery of cosmic background radiation
Primordial Nucleosynthesis
Discovery of Neutrons Stars
Galaxy rotation curve
Dark Energy and Accelerated Expansion of the Universe
WMAP Satellite
Baryon acoustic oscillations
Planck Satellite
Gravitational waves of two black holes
Gravitational waves of two neutron stars